Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.
نویسندگان
چکیده
This work focuses on the design of composite photoanodes with dual-mode luminescent function as well as the effects of luminescent phosphors on the photoelectric properties of dye-sensitized solar cells. Specifically, hexagonal phase NaYF4:Yb(3+)/Er(3+) microcrystals were prepared by a hydrothermal method and added to the TiO2 photoanodes of dye-sensitized solar cells. The results indicated that the TiO2-NaYF4:Yb(3+)/Er(3+) composite photoanodes can emit visible light under 495 or 980 nm excitation, and then the visible light can be absorbed by dye N719 to improve light harvesting and thereby the efficiency of the solar cell. Under simulated solar radiation in the wavelength range of λ≥ 400 nm, the photoelectric conversion efficiency of TiO2-NaYF4:Yb(3+)/Er(3+) cell was increased by 10% compared to pure TiO2 cell. For the electrodes with the same thickness, the amount of dye adsorption of the photoanodes decreased a little after adding NaYF4:Yb(3+)/Er(3+), which was attributed to the decrease of TiO2 in the photoanodes. The electron transport and interfacial recombination kinetics were investigated by the electrochemical impedance spectroscopy and intensity-modulated photocurrent/photovoltage spectroscopy. The TiO2-NaYF4:Yb(3+)/Er(3+) cell has longer electron recombination time as well as electron transport time than pure TiO2 cell. The charge collection efficiency of TiO2-NaYF4:Yb(3+)/Er(3+) cell was little lower than that of pure TiO2 cell. In addition, the interfacial resistance of the TiO2-dye|I3(-)/I(-) electrolyte interface of TiO2-NaYF4:Yb(3+)/Er(3+) cell was much bigger than that of pure TiO2 cell. All these results indicated that the charge transport cannot be improved by adding NaYF4:Yb(3+)/Er(3+). And thus, the enhanced photoelectric conversion efficiencies of TiO2-NaYF4:Yb(3+)/Er(3+) cells were closely related to the dual-mode luminescent function of NaYF4:Yb(3+)/Er(3+).
منابع مشابه
Preparation and Characterization of Downconversion Luminescent LaVO4: Tm3+ , Yb3+ and Tm3+ /Yb3+ Nanosheets
Tm3+ , Yb3+ and Tm3+ /Yb3+ doped LaVO4 nanostructures were synthe- sized for the first time by using the hydrothermal method with the aid of La(CH3CO2)3 as lanthanum source in presence of oleic acid as surfactant. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and ...
متن کاملSynthesis of Upconversion β-NaYF4:Nd3+/Yb3+/Er3+ Particles with Enhanced Luminescent Intensity through Control of Morphology and Phase
Hexagonal NaYF₄:Nd3+/Yb3+/Er3+ microcrystals and nanocrystals with well-defined morphologies and sizes have been synthesized via a hydrothermal route. The rational control of initial reaction conditions can not only result in upconversion (UC) micro and nanocrystals with varying morphologies, but also can produce enhanced and tailored upconversion emissions from the Yb3+/Er3+ ion pairs sensitiz...
متن کاملApplication of azo dye as sensitizer in dye-sensitized solar cells
An azo dye used as photosensitizers in Dye-sensitized solar cells DSSCs. Azo dyes economically superior to organometallic dyes because they are color variation and cheap. The spectrophotometric evaluation of an azo dye in solution and on a TiO2 substrate show that the dye form J-aggregation on the nanostructured TiO2 substrate. Oxidation potential measurements for used azo dyes ensured an energ...
متن کاملSimple Synthesis of In2S3 Nanoparticles and their Application as Co-sensitizer to Improve Energy Conversion of DSSCs
This paper describes synthesis of In2S3 nanoparticles by sonochemistry method and their application to enhance solar cells performance which In2S3 nanoparticles work as co-sensitizer for the first time. In2S3 is a narrow band gap semiconductor (2 eV) with conduction band higher than TiO2. Therefore it can transfer electron to the conduction band of TiO2. The effect of different parameters such ...
متن کاملElectron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell
The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 42 22 شماره
صفحات -
تاریخ انتشار 2013